首页> 外文OA文献 >Multidisciplinary Applications of Detached-Eddy Simulation to Separated Flows at High Reynolds Numbers
【2h】

Multidisciplinary Applications of Detached-Eddy Simulation to Separated Flows at High Reynolds Numbers

机译:分离涡流模拟在高雷诺数分离流中的多学科应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We focus on multidisciplinary applications of detached-eddy simulation (DES), principally flight mechanics and aeroelasticity. Specifically, the lateral instability (known as abrupt wing stall) of the preproduction F/A-18E is reproduced using DES, including the unsteady shock motion. The presence of low frequency pressure oscillations due to shock motion in the current simulations and the experiments motivated a full aircraft calculation, which showed low frequency high-magnitude rolling moments that could be a significant contributor to the abrupt wing stall phenomenon. DES is also applied to the F-18 high angle of attack research vehicle (HARV) at a moderate angle of attack to reproduce the vortex breakdown leading to vertical stabilizer buffet. Unsteady tail loads are compared to flight test data. This work lays the foundation for future deforming grid calculations to reproduce the aero-elastic tail buffet seen in flight test. Solution based grid adaption is used on unstructured grids in both cases to improve the resolution in the separated region. Previous DoD Challenge work has demonstrated the unique ability of the DES turbulence treatment to accurately and efficiently predict flows with massive separation at flight Reynolds numbers. DES calculations have been performed using the Cobalt code and on unstructured grids, an approach that can deal with complete configurations with very few compromises. A broad range of flows has been examined in previous Challenge work, including aircraft forebodies, airfoil sections, a missile afterbody, vortex breakdown on a delta wing, and the F-16 and F-15E at high angles-of-attack. All DES predictions exhibited a moderate to significant improvement over results obtained using traditional Reynolds-averaged models and often excellent agreement with experimental/flight-test data. DES combines the efficiency of a Reynolds-averaged turbulence model near the wall with the fidelity of Large-Eddy Simulation (LES) in separated regions. Since it uses Large-Eddy Simulation in the separated regions, it is capable of predicting the unsteady motions associated with separated flows. The development and demonstration of improved methods for the prediction of flight mechanics and aeroelasticity in this Challenge is expected to reduce the acquisition cost of future military aircraft.
机译:我们专注于分离涡流仿真(DES)的多学科应用,主要是飞行力学和气动弹性。具体地说,使用包括不稳定冲击运动在内的DES复制F / A-18E的横向不稳定(称为机翼突然失速)。在当前的模拟和实验中,由于冲击运动引起的低频压力振荡的存在促使飞机进行了一次完整的计算,结果表明低频高幅值的滚动力矩可能是机翼突然失速现象的重要原因。 DES还以中等攻角应用于F-18高攻角研究飞行器(HARV),以重现涡旋破坏,从而产生垂直稳定器自助餐。将不稳定的尾部载荷与飞行测试数据进行比较。这项工作为将来的变形网格计算奠定了基础,以重现在飞行测试中看到的气动弹尾自助餐。在两种情况下,基于解决方案的网格自适应都用于非结构化网格,以提高分离区域中的分辨率。先前的DoD Challenge工作证明了DES湍流处理的独特能力,可以准确有效地预测雷诺数飞行时的大量分离流量。 DES计算已使用Cobalt代码并在非结构化网格上执行,该方法可以处理几乎没有妥协的完整配置。在先前的“挑战”工作中已经检查了各种各样的气流,包括飞机前体,机翼截面,导弹后身,三角翼的涡旋破裂以及在高攻角下的F-16和F-15E。与使用传统雷诺平均模型获得的结果相比,所有DES预测均显示出中度到显着的改善,并且通常与实验/飞行测试数据具有极好的一致性。 DES将壁附近的雷诺平均湍流模型的效率与分离区域中的大涡模拟(LES)的保真度相结合。由于它在分离的区域中使用大涡模拟,因此它能够预测与分离的流动相关的不稳定运动。在本次挑战中,开发和演示用于预测飞行力学和空气弹性的改进方法,有望减少未来军用飞机的购置成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号